Generalized Hybrid Orbital (GHO) Method for Combining Ab Initio Hartree-Fock Wave Functions with Molecular Mechanics
نویسندگان
چکیده
The generalized hybrid orbital (GHO) method provides a way to combine quantum mechanical (QM) and molecular mechanical (MM) calculations on a single molecular system or supramolecular assembly by providing an electrostatically stable connection between the QM portion and the MM portion. The GHO method has previously been developed for semiempirical molecular orbital calculations, on the basis of neglect of diatomic differential overlap (GHO-NDDO); in the present work, it is extended to the ab initio Hartree-Fock (HF) level (GHO-AIHF). First, the theoretical foundation for the GHO-AIHF extension is discussed, and four different approaches are proposed to overcome the nonorthogonality between active molecular orbitals (MOs) and auxiliary MOs. In the first scheme, the auxiliary hybrid basis functions are projected out of the active QM basis. The second scheme neglects the diatomic differential overlap between the auxiliary basis and the active QM basis. In the third scheme, hybrid orbitals are constructed from Löwdin-type symmetric orthogonalized atomic orbitals on the basis of global Löwdin orthogonalization. The fourth procedure involves local Löwdin orthogonalization. The procedures for implementing the four GHO-AIHF schemes are described, and analytical gradient expressions are derived. The unparametrized GHO-AIHF method is tested for hydrocarbons with various basis sets, in particular, the geometries and charges are compared with pure QM calculations for ethane, ethyl radical, and n-octane, and the method is tested for the torsion potential around the central bond in n-butane. Furthermore, a parametrization of the GHO-AIHF method for the MIDI! basis is presented and tested for 16 molecules and ions with various functional groups near the QM/MM boundary. The results show the robustness of the algorithm and illustrate the significant improvement made by introducing several one-electron integral-scaling parameters. Finally, the energetic performance of the method is tested by comparing the proton affinities for a set of small model compounds (alcohols, amines, thiols, and acids) to results obtained from fully QM calculations. We conclude that the GHO-AIHF scheme provides a reasonable fundamental solution to the problem of combining an ab initio quantum mechanical electronic structure calculation with molecular mechanics.
منابع مشابه
An Ab initio and chemical shielding tensors calculations for Nucleotide 5’-Monophosphates in the Gas phase
Structural and magnetic properties of purine and pyrimidine nucleotides (CMP, UMP, dTMP, AMP, GMP, IMP) were studied at different levels of ab initio molecular orbital theory. These calculations were performed at the hartree-fock level and density functional B3LYP methods. Geometries were fully optimized by following Cs symmetry restrictions. The standard 6-31G** basis set which includes polari...
متن کاملKinetic Modeling of the Gas Phase Decomposition of Germane by Computational Chemistry Techniques
Very limited experimental data are available on thermal decomposition of germane in the gas phase. Recent developments in theoretical quantum chemistry techniques such as ab initio Hartree-Fock and density functional methods have made accurate determination of molecular properties possible. Systematic development of a detailed gas-phase decomposition mechanism for germane using ab initio molecu...
متن کاملPSI3: An open-source Ab Initio electronic structure package
PSI3 is a program system and development platform for ab initio molecular electronic structure computations. The package includes mature programming interfaces for parsing user input, accessing commonly used data such as basis-set information or molecular orbital coefficients, and retrieving and storing binary data (with no software limitations on file sizes or file-system-sizes), especially mu...
متن کاملAb-initio simulations of materials using VASP: Density-functional theory and beyond
During the past decade, computer simulations based on a quantum-mechanical description of the interactions between electrons and between electrons and atomic nuclei have developed an increasingly important impact on solid-state physics and chemistry and on materials science-promoting not only a deeper understanding, but also the possibility to contribute significantly to materials design for fu...
متن کاملAn ab initio study of metalated CMP,UMP& dTMP at HF level:Bond energies and isotropic NMR shielding of atoms
The interaction of Magnesium hydrate at the phosphate oxygen atom of the pyrimidine nucleotides (CMP,UMP,dTMP) were studied at the Hartree-Fock level Theory. We used LANL2DZ basis set for Mg and 6-31g* basis set for atoms.The basis set superposition error (BSSE) begins to converge for used Method/basis set. The gauge-invariant atomic orbital (GIAO) method and the continuous-set-of-gauge-transfo...
متن کامل